dathoc.com Bài giảng Giáo án đề thi tài liệu miễn phí Download, chia sẽ tài nguyên dạy và học miễn phí !
Tất cả Giáo án Bài giảng Bài viết Tài liệu
Nếu không xem dược hãy bấm Download về máy tính để xem
Download giao an TUYỂN TẬP MỘT SỐ ĐỀ THI HSG LỚP 8 (có đáp án) mien phi,tai lieu TUYỂN TẬP MỘT SỐ ĐỀ THI HSG LỚP 8 (có đáp án) mien phi,bai giang TUYỂN TẬP MỘT SỐ ĐỀ THI HSG LỚP 8 (có đáp án) mien phi 100%, cac ban hay chia se cho ban be cung xem

Uploaded date: 6/21/2013 8:41:15 PM
Filesize: 2.89 M
Download count: 819
Bấm nút LIKE +1 để cảm ơn
SAU ĐÓ BẤM
Download
ĐỀ 1
Câu 1 . Tìm một số có 8 chữ số:  thỏa mãn 2 điều kiện a và b sau:
a)  b) 
Câu 2 . Chứng minh rằng: ( xm + xn + 1 ) chia hết cho x2 + x + 1.
khi và chỉ khi ( mn – 2)  3.
Áp dụng phân tích đa thức thành nhân tử: x7 + x2 + 1.
Câu 3 . Giải phương trình:
 x = ( 1.2 + 2.3 + 3.4 + . . . + 2006.2007).
Câu 4 . Cho hình thang ABCD (đáy lớn CD). Gọi O là giao điểm của AC và BD; các đường kẻ từ A và B lần lượt song song với BC và AD cắt các đường chéo BD và AC tương ứng ở F và E. Chứng minh:
EF // AB
b). AB2 = EF.CD.
c) Gọi S1 , S2, S3 và S4 theo thứ tự là diện tích của các tam giác OAB; OCD; OAD Và OBC
Chứng minh: S1 . S2 = S3 . S4 .
Câu 5 . Tìm giá trị nhỏ nhất: A = x2 - 2xy + 6y2 – 12x + 2y + 45.
ĐÁP ÁN
Câu 1 . Ta có a1a2a3 = (a7a8)2 (1) a4a5a6a7a8 = ( a7a8)3 (2).
Từ (1) và (2) => 
=> ( a7a8)3 = a4a5a600 + a7a8 ( ( a7a8 )3 – a7a8 = a4a5a600.
( ( a7a8 – 1) a7a8 ( a7a8 + 1) = 4 . 25 . a4a5a6
do ( a7a8 – 1) ; a7a8 ; ( a7a8 + 1) là 3 số tự nhiên liên tiếp nên có 3 khả năng:
. a7a8 = 24 => a1a2a3 . . . a8 là số 57613824.
. a7a8 – 1 = 24 => a7a8 = 25 => số đó là 62515625
. a7a8 = 26 => không thoả mãn

 câu 2 . Đặt m = 3k + r với  n = 3t + s với 
xm + xn + 1 = x3k+r + x3t+s + 1 = x3k xr – xr + x3t xs – xs + xr + xs + 1.
= xr( x3k –1) + xs ( x3t –1) + xr + xs +1
ta thấy: ( x 3k – 1)  ( x2 + x + 1) và ( x3t –1 )  ( x2 + x + 1)
vậy: ( xm + xn + 1)  ( x2 + x + 1)
<=> ( xr + xs + 1)  ( x2 + x + 1) với 
<=> r = 2 và s =1 => m = 3k + 2 và n = 3t + 1
r = 1 và s = 2 m = 3k + 1 và n = 3t + 2
<=> mn – 2 = ( 3k + 2) ( 3t + 1) – 2 = 9kt + 3k + 6t = 3( 3kt + k + 2t)
mn – 2 = ( 3k + 1) ( 3t + 2) – 2 = 9kt + 6k + 3t = 3( 3kt + 2k + t)
=> (mn – 2)  3 Điều phải chứng minh.
áp dụng: m = 7; n = 2 => mn – 2 = 12  3.
( x7 + x2 + 1)  ( x2 + x + 1)
( x7 + x2 + 1) : ( x2 + x + 1) = x5 + x4 + x2 + x + 1
Câu 3 . Giải PT: 
Nhân 2 vế với 6 ta được:



Câu 4 .a) Do AE// BC =>  A B
BF// AD 
MặT khác AB// CD ta lại có
D A1B1 C
 nên  => EF // AB
b). ABCA1 và ABB1D là hình bình hành => A1C = DB1 = AB
Vì EF // AB // CD nên  => AB 2 = EF.CD.
c) Ta có: S1 = AH.OB; S2 = CK.OD; S3 = AH.OD; S4 = OK.OD.
=> ;  => => S1.S2 = S3.S4
Câu 5. A = x2- 2xy+ 6y2- 12x+ 2y + 45
= x2+ y2+ 36- 2xy- 12x+ 12y + 5y2- 10y+ 5+ 4
= ( x- y- 6)2 + 5( y- 1)2 + 4  
Giá trị nhỏ nhất A = 4 Khi: y- 1 = 0 => y = 1
x- y- 6 = 0 x = 7
---------------------------------------------
ĐỀ 2
Câu 1: a. Rút gọn biểu thức:
A= (2+1)(22+1)(24+1).......( 2256 + 1) + 1
b. Nếu x2=y2 + z2
Chứng minh rằng: (5x – 3y + 4z)( 5x –3y –4z) = (3x –5y)2
Câu 2: a. Cho  (1) và  (2)
Tính giá trị của biểu thức A= 
b. Tính : B = 
Câu 3: Tìm x , biết :
 (1)
Câu 4: Cho hình vuông ABCD, M ( đương chéo AC. Gọi E,F theo thứ tự là hình chiếu của M trên AD, CD. Chứng minh rằng:
a.BM ( EF
b. Các đường thẳng BM, EF, CE đồng quy.
Câu 5: Cho a,b, c, là các số dương. Tìm giá trị nhỏ nhất của
P= (a+ b+ c) ().
ĐÁP ÁN
Câu 1: a. ( 1,25 điểm) Ta có:
A= (2-1) (2+1) (22+1) ........ + 1
= (22-1)(22+1) ......... (2256+1)
= (24-1) (24+ 1) ......... (2256+1)
................
= [(2256)2 –1] + 1
= 2512
b, . ( 1 điểm) Ta có:
(5x – 3y + 4z)( 5x –3y –4z) = (5x – 3y )2 –16z2= 25x2 –30xy + 9y2 –16 z2 (*)
Vì x2=y2 + z2 ( (*) = 25x2 –30xy + 9y2 –16 (x2 –y2) = (3x –5y)2
Câu 2: . ( 1,25 điểm) a. Từ (1) ( bcx +acy + abz =0
Từ (2) (  
b. . ( 1,25 điểm) Từ a + b + c = 0 ( a + b = - c ( a2 + b2 –c2 = - 2ab
Tương tự b2 + c2 – a2 = - 2bc; c2+a2-b2 = -2ac
B = 
Câu 3: . ( 1,25 điểm)
( 
( x= 2007 A
Câu 4: a. ( 1,25 điểm) Gọi K là giao điểm CB với EM; B
H là giao điểm của EF và BM
(( EMB =(BKM ( gcg)
( Góc MFE =KMB ( BH ( EF E M K
b. ( 1,25 điểm) ( ADF = (BAE (cgc) (AF ( BE H
Tương tự: CE ( BF ( BM; AF; CE
là các đường cao của (BEF ( đpcm
Câu 5: ( 1,5 điểm) Ta có: D F C
 P = 1 + 
Mặt khác  với mọi x, y dương. ( P ( 3+2+2+2 =9
Vậy P min = 9 khi a=b=c.
---------------------------------------
ĐỀ 3
Bài 1 (3đ):
1) Phân tích các đa thức sau thành nhân tử:
a) x2 + 7x + 12
b) a10 + a5 + 1
2) Giải phương trình: 
Bài 2 (2đ):
Tìm giá trị nguyên của x để biểu thức  có giá trị nguyên
Bài 3 (4đ): Cho tam giác ABC ( AB > AC )
1) Kẻ đường cao BM; CN của tam giác. Chứng minh rằng:
a)  đồng dạng 
b) góc AMN bằng góc ABC
2) Trên cạnh AB lấy điểm K sao cho BK = AC. Gọi E là trung điểm của BC; F là trung điểm của AK.
Chứng minh rằng: EF song song với tia phân giác Ax của góc BAC.
Bài 4 (1đ):
Tìm giá trị nhỏ nhất của biểu thức:
 , ( x khác 0)
ĐÁP ÁN
Bài 1 (3đ):
1) a) x2 + 7x + 12 = (x+3)(x+4) (1đ)
b) a10 + a5 + 1 = (a10 + a9 + a8 ) - (a9 + a8 + a7 ) + (a7 + a6 + a5 ) - (a6 + a5 + a4 ) + (a5 + a4 + a3 ) - (a3 + a2 + a ) + (a2 + a + 1 ) = (a2 + a + 1 )( a8 - a7 + a5 - a4 + + a3 - a+ 1 ) (1đ)
2)

(+1) + ( + 1) = ( + 1) + ( + 1) (0,5đ)
 ( x + 100 )(  + -  - ) = 0 (0,25đ)
Vì:  + -  -   0
Do đó : x + 100 = 0  x = -100
Vậy phương trình có nghiệm: x = -100 (0,25đ)

Bài 2 (2đ):
P =  (0,5đ)
x nguyên do đó x + 2 có giá trị nguyên
để P có giá trị nguyên thì  phải nguyên hay 2x - 1 là ước nguyên của 5 (0,5đ)
=> * 2x - 1 = 1 => x = 1
* 2x - 1 = -1 => x = 0
* 2x - 1 = 5 => x = 3
* 2x - 1 = -5 => x = -2 (0,5đ)
Vậy x =  thì P có giá trị nguyên. Khi đó các giá trị nguyên của P là:
x = 1 => P = 8
x = 0 => P = -3
x = 3 => P = 6
x = -2 => P = -1 (0,5đ)

Bài 3 (4đ):
1) a) chứng minh ABM đồng dạng CAN (1đ)
b) Từ câu a suy ra: AMN đồng dạng ABC
AMN = ABC ( hai góc tương ứng) (1,25đ)
2) Kẻ Cy // AB cắt tia Ax tại H (0,25đ)
BAH = CHA ( so le trong, AB // CH)
mà CAH = BAH ( do Ax là tia phân giác) (0,5đ)
Suy ra:
CHA =CAH nên CAH cân tại C
do đó : CH = CA => CH = BK và CH // BK (0,5đ)
BK = CA
Vậy tứ giác KCHB là hình bình hành suy ra: E là trung điểm KH
Do F là trung điểm của AK nên EF là đường trung bình của tam giác KHA. Do đó EF // AH hay EF // Ax ( đfcm) (0,5đ)
Bài 4 (1đ):
A =  =  + 
= 
A min =  khi x - 2007 = 0 hay x = 2007 (0,5đ)
------------------------------------
ĐỀ SỐ 4
Câu 1 ( 3 điểm ) . Cho biểu thức A = 
a, Tìm điều kiện của x để A xác định .
b, Rút gọn biểu thức A .
c, Tìm giá trị của x để A > O
Câu 2 ( 1,5 điểm ) .Giải phơng trình sau : 
Câu 3 ( 3,5 điểm): Cho hình vuông ABCD. Qua A kẽ hai đờng thẳng vuông góc với nhau lần lợt cắt BC tai P và R, cắt CD tại Q và S.
1, Chứng minh AQR và APS là các tam giác cân.
2, QR cắt PS tại H; M, N là trung điểm của QR và PS . Chứng minh tứ giác AMHN là hình chữ nhật.
3, Chứng minh P là trực tâm SQR.
4, MN là trung trực của AC.
5, Chứng minh bốn điểm M, B, N, D thẳng hàng.
Câu 4 ( 1 điểm):
Cho biểu thức A = . Tìm giá trị nguyên của x để A nhận giá trị nguyên
Câu 5 ( 1 điểm)
a, Chứng minh rằng 
b, Cho  Tính 
ĐÁP ÁN
Câu 1
a, x  2 , x -2 , x 0
b , A = 
= 
= 
c, Để A > 0 thì 
Câu 2 . ĐKXĐ : 
PT 

x =1 ; x = 2 ; x = - 2/ 3
Cả 3 giá trị trên đều thỏa mãn ĐKXĐ .
Vậy PT đã cho có tập nghiệm S = 
Câu 3:
1, ADQ = ABR vì chúng là hai tam giác vuông (để ý góc có cạnh vuông góc) và DA=BD ( cạnh hình vuông). Suy ra AQ=AR, nên AQR là tam giác vuông cân. Chứng minh tợng tự ta có: ARP=ADS
do đó AP = AS vàAPS là tam giác cân tại A.
2, AM và AN là đờng trung tuyến của tam giác vuông cân AQR và APS nên ANSP và AMRQ.
Mặt khác :  = 450 nên góc MAN vuông. Vậy tứ giác AHMN có ba góc vuông, nên nó là hình chữ nhật.
3, Theo giả thiết: QARS, RCSQ nên QA và RC là hai đờng cao của SQR. Vậy P là trực tâm của SQR.
4, Trong tam giác vuông cân AQR thì MA là trung điểm nên AM =QR.
Trong tam giác vuông RCQ thì CM là trung tuyến nên CM = QR.
MA = MC, nghĩa là M cách đều A và C.
Chứng minh tơng tự cho tam giác vuông cân ASP và tam giác vuông SCP, ta có NA= NC, nghĩa là N cách đều A và C. Hay MN là trungtrực của AC
5, Vì ABCD là hình vuông nên B và D cũng cách đều A và C. Nói cách khác, bốn điểm M, N, B, D cùng cách đều A và C nên chúng phải nằm trên đờng trung trực của AC, nghĩa là chúng thẳng hàng.
Câu 4 . Ta có ĐKXĐ x  -1/2
A = (x + 1) + vì x Z nên để A nguyên thì nguyên
Hay 2x+1 là ớc của 2 . Vậy :
2x+1 = 2 x=1/2 ( loại )
2x+1 = 1  x = 0
2x+1 = -1  x = -1
2x +1 = -2  x = -3/2 ( loại )
KL : Với x = 0 , x= -1 thì A nhận giá trị nguyên
Câu 5. a, , Chứng minh 
Biến đổi vế phải đợc điều phải chứng minh.
b, Ta có  thì

(vì  nên )
Theo giả thiết 
khi đó 
=====================
ĐỀ 5
Bài 1 : (2 điểm) Cho biểu thức :
M = 
a) Rút gọn
b) Tìm giá trị bé nhất của M .
Bài 2 : (2 điểm) Tìm giá trị nguyên của x để A có giá trị nguyên
A = 
Bài 3 : 2 điểm
Giải phương trình :
x2 - 2005x - 2006 = 0
 +  +  = 9
Bài 4 : (3đ) Cho hình vuông ABCD . Gọi E là 1 điểm trên cạnh BC . Qua E kẻ tia Ax vuông góc với AE . Ax cắt CD tại F . Trung tuyến AI của tam giác AEF cắt CD ở K . Đường thẳng qua E song song với AB cắt AI ở G . Chứng minh :
AE = AF và tứ giác EGKF là hình thoi .
AEF ~  CAF và AF2 = FK.FC
Khi E thay đổi trên BC chứng minh : EK = BE + DK và chu vi tam giác EKC không đổi .
Bài 5 : (1đ) Chứng minh : B = n4 - 14n3 + 71n2 -154n + 120
chia hết cho 24
ĐÁP ÁN
Bài 1 :
M = x4+1-x2) = 
Biến đổi : M = 1 -  . M bé nhất khi  lớn nhất x2+1 bé nhất  x2 = 0  x = 0 M bé nhất = -2
Bài